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What Is a taste and odor event?

m Occurrence of organic compounds
Geosmin — “earth smell”
MIB (2-methylisoborneol)

m Low human detection limits
>5-10 parts per trillion (ng/L)

m No known effects on human health

Perceived effect on drinking water quality
can be high

m Expensive to measure!



What are the main producers of
T&O compounds?

m Blue green algae
Anabaena sp.
Aphanizomen sp.
Microcystis sp.
Oscillatoria sp.

m Actinomycetes

Much less is known about their impact in
Kansas Reservoirs



Common cyanobacteria in
Kansas reservolirs

Anabaena sp.

Microcystis sp.

Aphanizomenon sp.




Cyanobacteria

m Additional water quality concerns
affecting reservoir water quality

Algal toxins
Low dissolved oxygen
Surface scums



Notice
An algae bloom has made

this area potentially
unsafe for water contact.
Avoid direct contact with

visible surface scum.













Early warning systems

m Short window of opportunity to detect

and treat an event before complaints
come in

m Can we use ecological and limnological
principles to determine when T&O
events are most likely to occur?

m How can these tools be implemented
and used by water treatment
personnel?



Why do cyanobacteria bloom?

m Factors affecting abundance
Temperature

Nutrient concentrations (nitrogen and
phosphorus)

Water clarity
Reservoir mixing

m Can we use changes in these variables
to predict blooms?
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Example: Chlorophyll a and geosmin
In Cheney Reservolir
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Data from Smith et al. 2002



Water quality model development

m Include variables that are relatively easy and
cost effective to measure or collect

m “Universal model” for all reservoirs in the state?

m Models for individual reservoirs or groups of
similar reservoirs?

m Models do not necessarily imply causation
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Reservoir sampling

m Sampled five reservoirs of various sizes:

Big Hill, Cheney, Clinton, Gardner, and Marion

m Reservoirs sampled through the summer, and In
some Iinstances into the fall and winter

m Several reservoir locations were sampled to
account for spatial variation in water quality
conditions
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Water quality variables

Geosmin
Dissolved Nutrients (nitrogen and phosphorus)
Total Nutrients (nitrogen and phosphorus)

Algal biomass (chlorophyll a and phaeophytin, relative
fluorescence, cyanobacterial biomass)

Water Temperature
pH

Specific Conductance
Dissolved Oxygen
Turbidity

Secchi Disk depth



Relationships between TP and
chlorophyll ain 5 study reservoirs
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Percentage of geosmin samples exceeding
human detection In 5 reservoirs
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" JCan we develop a universal
model to predict T&O events?

log,,(Geo) = 1.24 - 0.35 log, ,(PO,), r°=0.30

log,,(Geosmin)

A single variable, PO, explained 30% of the variation in geosmin concentration

Treat when PO, is less than 1.5
Do not treat when PO, is greater than 1.5



Universal models

m Could be used to predict geosmin,
but may not be accurate enough
to make treatment decisions

m \What about individual reservoir
models?
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m Secchi disk depth
explained 50% of
the variation in
geosmin

Clinton Reservolr

log,,Geosmin (ng L)

High Secchi Disk depths = T&O event
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Cheney Reservoir

m \We were unable to develop a significant model
for Cheney Reservoir

m However, both the USGS (2006) and Smith et
al. (2002) were able to develop models

m These results indicate that the factors affecting
T&O events vary spatially even within
reservoirs

Need multiple years of data to develop accurate
models
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Predictive geosmin models

m Measure predictor variable (e.g.
chlorophyll a)

m Insert value into spreadsheet formulas
m Obtain estimate of geosmin

m Make treatment decisions
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CLINTON LAKE

Geosmin Model - August 2007

Model Inputs Obsened Model Results
W alue Madel I Model Il Maded Il Maode! 1Y Made! W
Orthophosphate, POy (gL ) 137 lag [Geasmin] 0818045 0803529 0.925 0.9427  1.079663
Temperature (deg. ) 227 Predicted
Total Phosphate, TF (ugiL) 61 Geosmin (ng/L) | 6.6 6.4 84 g8 12.0 |
Secchi Disk Depth {cm) 518 Owverall Model R* 0.36 0.53 0.50 0.43 0.82
Total Mitrogen, TH (mafL) 0655
Cyanobacterial Biovolume (%) 0
Model Design
Model Extents Model Equations
Made! Extent R Mode! Model Equation
i Universal hodel 0.36 i log{Geosming = a + b log{Fo )
i Liniversal Model 0.53 i logiGeosminl = a + b logfPO) + ¢ logTEMPY + d log(TF)
i Clinton specific 0.50 I logiGeosminy=a + b (SECC)
N Clinton specific 0.43 e logiGeosminl=a+ b (PO,
I Clintan specific 0.62 I logi{Geosming = a + b (TH) + ¢ logTEMP) + o (SCYAN)

Model Input Factors

Factor Measured Compound
POy Orthophosphate (poil)
TEMP Temperature (deg. C)
TF Total Phosphate (pg/L)
SECC secchi Disk Depth (em)
TN Total Mitragen, TH (rmgfL)
B AN Cyanobacterial Biovolurme (%)

Mode! Coefficients
Coefficient Modeal |

Moded 1t Made! 1 Moda! I'Y Model W

3 1.25
b -0.358
C
d

1.45 0.443 1.34 1.38
-0.61 0.007 -0.029 1.78
-0.62 -1.45
0.50 0.01
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Water Quality Modeling:
Conclusions

m Significant models could be developed
to estimate geosmin concentrations for
most reservoirs

m Individual reservoir models appear to be
better than universal model for most
reservoirs

m T&O events were common in reservoirs
regardless of nutrient concentrations
and throughout the year




Future Water Quality
Model Development

m Include additional variables in the
models

m Include water quality data from other
investigators

m Continue to collect data to improve
and refine models

m Test the accuracy of models in each
reservoir and additional reservoirs
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Can we use remotely sensed data to
predict T&O events?

m Use satellite imagery to monitor the
development of algal blooms and T&O events?

1. Landscape
characteristics

Clinton Lake Watershed
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2. Monitor spatial and
Example: Differences in turbidity temporal patterns

_concent.ratlons shown by differences Cowe by I B High cwrbidity
in satellite reflectance values
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Red areas indicate high

chlorophyll (blue-green
algae) concentrations

In the water.
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Implementation of Models

m Drinking Water T&O Workgroup created to
help translate research findings into
usable treatment strategies

Variable measurement must be rapid (0-5
days)

Data collection and analysis must be cost
effective

Test the accuracy of the models
User friendly model structure and data input
Will the reservoir models work with raw water
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Implementation  (continued)

m Algal identification training
Workshops to help distinguish between main
T & O producers

Anabaena sp.

Microcystis sp.

Aphanizomenon sp. &
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Implementation (continued)

m Water quality kits

Provide “kits” that can be used to sample
water that is then sent for immediate
analysis of water quality conditions

m Collect water quality sample

m Overnight to laboratory for processing

m Plug values into predictive models to get
estimate of geosmin concentrations
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Implementation (continued)

m Standardized T&O Event Form

m Used by all treatment plants in the state

m Better understand temporal and spatial
dynamics

m Compile associated water quality data from
state and federal agencies

m Determine how big a problem T&O events are
In the state (humber of plants affected,
frequency of events, duration of events)
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Future Needs

@ Documentation of T&O events

m More ecological and limnological data
associated with T&O events

m Extent of the role of Actinomycetes

m Assessment of the relationships between
remotely sensed watershed and reservoir
conditions and measured WQ and T&O
variables
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In summary

After almost 100 years of data collection and
analysis, it is clear that both the decay of plant
matter as well as release of metabolites and
storage products of living microbiota
contribute to tastes and odors in water supplies
(Sigworth, 1957).

“In that same 100 years we seem to have made
only limited progress in predicting the when
and where taste and odor events will occur but
we need to make the research investment”
(Huggins and Dzialowski, 2008).
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