CLASS I NON-HAZARDOUS WASTE INJECTION WELL APPLICATION FOR SUBSURFACE DISPOSAL OF NON-HAZARDOUS LIQUID INDUSTRIAL WASTE

Submit to: Date of Application: _______________________
Kansas Department of Health and Environment KDHE UIC Permit #: ______________________
Bureau of Water, Geology Section Well(s) #: _______________________________
1000 SW Jackson St., Suite 420 G.P.S. Coordinates:
Topeka, KS 66612-1367 Latitude: ________________________________
Owner’s Name, Telephone Number, Mailing and E-mail Addresses:
__________________________________ Longitude: ______________________________
__________________________________ County: ________________________________
__________________________________ Located on Indian Lands:
Operator’s Name, Telephone Number, Mailing and E-mail Addresses:
__________________________________ Yes ________ No ________
__________________________________ Facility Names, Telephone Number,
__________________________________ Mailing and E-mail Addresses:
__________________________________ __
__________________________________ __
__________________________________ __
Contact Person’s Name and Mailing Address:
__________________________________ Contact Person’s Information:
__________________________________ Phone: __________________________________
__________________________________ Fax: ____________________________________
__________________________________ E-mail: __________________________________

In conformity with the provisions of K.S.A. 65-171d, the undersigned, representing
(Name of company, corporation, partnership, or person, or government or other public agency applying)
hereby makes application to KDHE for a permit to dispose of liquid wastes into the subsurface
by means of a disposal well.
The application should address the following items in numerical order.

1. Provide documentation all required local approvals have been obtained.

2. List any permits or construction approvals received or applied for by the facility which are required under any of the following programs
 - Underground Injection Control program under the Safe Drinking Water Act.
 - National Pollutant Discharge Elimination System program under the Clean Water Act.
 - Prevention of Significant Deterioration (PSD) program under the Clean Air Act.
 - Nonattainment program under the Clean Air Act.
 - National Emission Standards for hazardous Pollutants (NESHAPS) preconstruction approval under the Clean Air Act.
 - Dredge and fill permits under section 404 of Clean Water Act.
 - Other relevant environmental permits, including State permits.

3. An owner or operator of any construction activity such as a new well or a combination of construction activities in a common plan of development who engages in construction activities which will disturb one (1) or more acres of soil needs to receive authorization from KDHE to discharge construction stormwater under the Kansas Construction Stormwater General Permit. Anyone who disturbs less than one (1) acre may also be required to obtain authorization to discharge construction stormwater runoff when KDHE believes the water quality impact warrants consideration. Construction activities include construction of roads accessing the well site and construction of the well drilling pad. Information on construction stormwater permitting can be found at the following website: www.kdheks.gov/stormwater.

4. Provide up to four Standard Industrial Classification (SIC) codes which best reflect the principal products or services provided by the facility.

5. Describe all liquid waste to be disposed of, including physical, chemical, bacteriological and radiological properties and toxicity. Provide analyses for each waste stream including analyses for all constituents listed in Attachment A. Include Material Safety Data Sheets (MSDS) for any additives used. All analyses shall be conducted by a laboratory certified by the State of Kansas. Additional testing of the waste stream may be required after review of the application and pertinent information.

6. Provide a demonstration that each individual waste stream is not hazardous as defined by RCRA. This includes documentation that the waste is not a listed hazardous waste or a characteristic hazardous waste. The applicant makes the demonstration by
evaluating the waste against a list of exempted wastes, the four lists of hazardous wastes (F, K, P, & U Lists) and the four characteristics of:

a. ignitability
b. corrosivity
c. reactivity
d. toxicity

KDHE’s Bureau of Waste Management can be contacted at (785) 296-1600 for assistance.

Describe the procedures and methods used to obtain representative samples of the waste stream(s). Include a description of the following:

- location where the samples were collected
- the method used to collect the samples
- sample containers
- sample storage
- transportation of samples
- chain of custody
- quality assurance/control procedures used

7. Describe the sources, including individual processes, generating the various waste streams that are proposed to be injected. Provide a waste flow block diagram depicting the relationship of the sources to the proposed disposal well. Include all waste sources and estimated quantities of waste produced by each source. An example of an acceptable diagram format is attached.

8. Describe the current disposal method(s) for the waste(s) that is proposed to be injected.

9. The use of industrial-waste disposal wells is considered only for those wastes for which it is not feasible to treat the waste and dispose by other means. Include a report of the results of studies of alternative treatment and disposal technologies and a justification of why subsurface disposal is considered the best method for disposal of the waste. Include a detailed cost estimate and a description of benefits and risks for each alternative. The report must address the requirements of the KDHE policy entitled “Determination of the Types of Waste Eligible for Disposal into a Class I UIC Disposal Well”. (A copy of the policy is attached.)

10. Provide a waste handling contingency plan for coping with well failure or shut-in of the well. Include a detailed description of any facilities used for this purpose.

11. Provide the following: Guidance for completing this section Procedure # UICI-14, Procedure for Completing Section #11 of the Permit Application for a Class I Non-Hazardous Waste Injection Well can be found at:

Note: Seismic data may be necessary to characterize the subsurface geology if there is insufficient well control in the area.

a. Provide discussion and supportive information demonstrating drilling the disposal well and injecting industrial waste into the subsurface stratum will not endanger or injure any mineral resources (coal, oil, gas, salt, sand, gravel, others) bearing formations. Include maps and sources for other supporting information.

b. A map indicating the boundaries and ownerships of tracts of land adjacent to the applicant’s facility boundaries. Include a list of the names and mailing addresses of all owners of tracts of land adjacent to the plant boundaries keyed to the map.

c. A USGS topographic map indicating the facility boundaries and well location. Include on this map an outline of the one (1) mile radius area of review.

d. Provide a clear, legible, detailed map with an appropriate scale. The one mile radius area of review must be drawn on the map. The following, if present within the area of review, must be shown on the map.

- the injection well to be permitted
- all oil and gas producing wells
- all inactive wells
- injection wells
- abandoned wells
- dry holes
- plugged wells
- core holes
- surface water bodies
- springs
- mines
- quarries
- water wells
- monitoring wells
- faults
- linaments
- other pertinent surface features

Provide a tabulation of data for all wells penetrating the injection zone and/or the confining zone within the area of review including the following:

- current status
- type
- construction
- date of drilling
- location
Key these wells to the map. Copies of plugging records for wells penetrating the injection zone and/or the confining zone shall be provided if available. **A schematic indicating the current configuration of all wells penetrating the injection zone and/or confining zone shall be submitted.** Provide proposed corrective measures required for wells in the area of review, if any.

e. Describe the protocol used to identify, locate and ascertain the condition of all wells within the area of review. At a minimum the records of the following shall be reviewed:

- Kansas Department of Health and Environment
- Kansas Geological Society
- Kansas Geological Survey
- Kansas Corporation Commission

Provide documentation that these sources were checked. Appropriately scaled aerial photos of the area of review shall also be examined for any indication of wells and the results reported. Copies of the aerial photos examined shall also be submitted. In addition, the location of each abandoned well penetrating the injection zone shall be physically inspected. The results of this inspection shall be documented and submitted to KDHE.

f. Provide surface geologic maps, cross sections, and structural contour maps illustrating the regional geologic setting.

g. Provide two cross-sections perpendicular to each other crossing at the proposed injection well location. These cross-sections shall include, at a minimum, available wire-line logs, geologic units and lithology from the surface to the base of the injection zone. The lines of the cross-sections should be shown on all structure maps. The cross-sections should contain the well numbers from the area of review map for reference.

h. Provide maps and cross-sections indicating the general vertical and lateral limits of all aquifers containing less than 10,000 mg/l total dissolved solids within the area of review, their position relative to the zone of injection and the direction of water movement if known. (i.e. groundwater flow map) All maps should include the area of review.

i. Provide detailed discussion of the nature and areal development of upper and lower confining strata (lithology permeability, etc.).

j. Provide descriptions and maps of faulting and fracturing or lineations in the area and discussion of the seismic history and activity of the area.
k. Provide depositional and structural history of the area including lithology and hydrologic properties of all units penetrated by the proposed well.

l. Provide the following maps for the area using available well control:
 - Structural contour map of the injection zone
 - Isopach map of the injection zone
 - Structural contour map of the confining zone
 - Isopach map of confining zone

m. Provide a piezometric surface map of the injection zone or, if insufficient data is available, provide the expected static fluid level and regional gradient. Reference sources of this information and include the area of review on the map.

n. Provide a description of porosity, permeability, and temperature of the injection interval and chemical characteristics of the injection interval fluid. Reference sources of this information.

o. Provide the predicted fracture pressure of injection interval. Provide the calculations and methodology used to determine the fracture pressure. Reference the sources of values used. One example of an acceptable equation for calculating the predicted fracture pressure is the Eaton Equation, as follows:

\[
F = \left(\frac{S-P}{D} \right) \left(\frac{\nu}{1-\nu} \right) + \frac{P}{D}
\]

P = wellbore pressure, psi
D = depth, ft
S = overburden stress, psi
\nu = Poisson’s ratio
F = fracture gradient, psi/ft

p. Calculate the predicted injection zone pressure build-up within a one (1) mile radius of the proposed injection wellbore. Provide a pressure contour map for the area of review. Include calculation, equations, parameters and sources of information used to arrive at the predicted pressure build-up. This should be calculated for the expected life of the injection well. The effects of other wells injection into the same injection zone within the vicinity of the proposed well shall also be considered.

q. Calculate the cone of influence. Provide a map showing the cone of influence. The cone of influence is defined as that area around the well within which increased injection zone pressures caused by injection into the injection well would be sufficient to drive fluids into a source of fresh and usable water. Include
calculations, equations, parameters, and sources of information used to determine the cone of influence. This should be calculated for the expected life of the well.

r. Calculate the predicted distance of wastewater flow from the injection well. Include calculations, equations, parameters and sources of information used. This should be calculated for the expected life of the well. An acceptable equation for calculating this comes from Warner and Lehr, Subsurface Wastewater Injection, Premier Press, 1981 and is as follows:

\[
 r = \sqrt{\frac{V}{\pi b \phi}}
\]

\(r \) = radial distance of wastewater front from well
\(V = Qt \) = cumulative volume of injected wastewater (in cubic ft.)
\(b \) = Arbuckle thickness
\(\phi \) = average porosity

12. Provide a report discussing the anticipated compatibility of the waste stream with both the interstitial fluids and formation minerals in the injection zone and the confining zone at expected temperature and pressures. The report should include anticipated reaction products. Common reactions are listed in Procedure # UICI-10, Procedure for Conducting A Compatibility Study for Class I Disposal Wells, which can be found at: http://www.kdheks.gov/uic/download/UICI-10.pdf. Reference the sources of this information.

13. Provide a plan for conducting a study of compatibility of the waste with the interstitial fluids and formation minerals in the injection zone and the confining zone. Procedure #UICI-10, Procedure for Conducting A Compatibility Study for Class I Disposal Wells can be found at: http://www.kdheks.gov/uic/download/UICI-10.pdf. Include the name of the laboratory that will be used for any core sample analysis and formation fluid testing.

14. Provide a report on the results of a corrosion test on all injection well components and appurtenances which will be in contact with the waste stream. Include the name of the manufacturer of the components. All materials must be compatible with the waste which the materials may be expected to come into contact. The materials shall be deemed to have compatibility as long as the materials meet or exceed standards developed for such materials by the American Petroleum Institute, the American Society for Testing Materials or comparable standards. Include a description of the methodology and procedures used to conduct the test and to make the compatibility determination. Include the manufacturer’s test date for the injection tubing.
15. Injection Zone:

<table>
<thead>
<tr>
<th>Formation(s) Name</th>
<th>Estimated Depth of Top*</th>
<th>Estimated Depth of Base*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Injection Interval:

Perf/Openhole _____ to _____, _____ to _____, _____ to _____ *

*Provide reference point for these values.

16. Top hole elevation ________ (Top hole elevation of the proposed disposal well, with a closed traverse from U.S.G.S. or approved bench mark tied to the U.S.G.S. bench mark system.)

17. Well Completion: Provide borehole, casing, tubing, packer and cement information. The tubing and packer for new wells shall be new. Surface casing and longstring casing for new wells shall be new and cemented bottom to top by circulating. Sufficient cement shall be used to circulate to surface plus a minimum of 20% excess. The well shall be cased and cemented such that: 1) injection fluids and injection zone or other formation fluids do not cause deterioration of the water quality of fresh and/or usable water zones, 2) the loss of fresh and/or usable water due to downward migration is prevented, and 3) the release of injection fluids into an unauthorized zone is prevented.

<table>
<thead>
<tr>
<th>Borehole size</th>
<th>Casing/ Material Weight lbs/ft</th>
<th>Casing depth</th>
<th>Casing Joint lengths</th>
<th>Type Cement</th>
<th>Amount cement (sacks)</th>
<th>Cement interval from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Packer Grade and Type _________ Estimated Packer Setting Depth ________ *

*Provide reference point for these values.

18. Describe the maximum burst pressure, collapse pressure and tensile stress which may be experienced including calculations, methodology and reference used to determine these. Provide the calculations, formulas, equations and methodology used to
determine the casing, cementing, tubing, and packer are designed to tolerate the pressures or forces anticipated to the encountered or exerted on the well during construction, completion and operation. Include design factors used and provide references. **If there is the potential for significant variance in the temperature of the injection fluid, provide information demonstrating this has been accounted for in the injection tubing and packer design.** The casing burst pressure, casing collapse pressure and the casing tension shall be calculated using performance properties listed in American Petroleum Institute (API) Bulletin 5C2. Well casing shall meet the specifications set out in API Specification 5CT. Submit service company recommendations along with studies to determine the suitability of the selected cements. Describe the type, grade, additives, slurry weight and expected compressive strength of the cement. Describe the cementing techniques and equipment including guide shoe, float collar, plugs, baskets D V tools and their location. Describe the number and location of the centralizers, wall scratchers, etc. Describe in detail the procedures to be used to ensure satisfactory cementing of the various casings and the remedial action to be taken if primary cementing results are not satisfactory.

19. **Annulus Monitoring System:** The annulus between ______ and ______ (pipe size) is to be monitored for leaks. Type of liquid in annulus __________. Proposed minimum annulus pressure is ________ psig. *(The minimum approvable annulus pressure is 60 psig.)* Provide an MSDS for any additives in the annulus liquid. **Provide design plans for the annulus seal pot monitoring system. (An acceptable design example is attached.)*

20. **Liquid Injection Rate:**

Liquid wastes to be injected at a minimum rate of __________ gallons/day to a maximum rate of __________ gallons/day. Provide a demonstration that the maximum injection rate is feasible.

21. **Injection Pressure:**

Disposal will be by means of gravity pressure (no pump pressure allowed) or ______ inches vacuum.

22. **Discuss the proposed injection procedure for the well. Submit a flow diagram.**

23. **Surface Facilities:**

Describe and provide design information and diagrams for all surface retention facilities, holding tanks, lines, transfer pumps an filters associated with the injection operation.
24. **Spill Prevention:**

 Provide a detailed spill prevention and containment plan for the injection operation. Provide design plans for any spill containment structure(s).

25. **Environmental Remedial Action:**

 Should fresh or usable water or the soils become contaminated by a failure of the injection facilities, the permittee is responsible for investigating the contamination and any required remediation of the contamination. The permittee will be required to sign an agreement with KDHE which will establish guidelines and objectives for investigation and remediation of the contamination. Provide acknowledgement of this requirement.

26. Discuss how monitoring requirements for the injection operation will be met. Electronic continuous recording devices and gauge or meters are required to monitor tubing pressure, flow rate, volume and annulus pressure. Describe the meters or gauges and continuous recording devices that will be used to measure and record injection volume, injection rate, annulus pressure and tubing vacuum. **KDHE-UIC Class I well Electronic Monitoring Specification can be found at:** http://www.kdheks.gov/uic/download/CLIEMS.pdf

27. Provide a diagram indicating the location of all monitoring devices. Provide a quality assurance/quality control plan for obtaining reliable monitoring data. This includes method of calibration and frequency of calibration of gauges, meters and continuous recording devices. Include a waste analysis plan that describes the procedures and methods to be used to obtain representative samples of the waste to meet monitoring requirements.

28. Describe where the injection fluid samples will be collected for monitoring purposes, the method used to collect the samples, sampling containers, sample storage, chain of custody procedures and the quality assurance/control procedures used. All analyses required by the UIC permit shall be conducted by a laboratory certified by the State of Kansas.

29. Provide a certificate of means of financial assurance the well will be properly plugged and abandoned at the end of its useful life or when required by KDHE to protect the public health, fresh and/or useable waters or soils. This should include all injection wells owned by the applicant. **Procedure # UICI-8, Procedure for Demonstrating Financial Assurance for a Class I Disposal Well can be found at:** http://www.kdheks.gov/uic/download/UICI-8.pdf

30. Provide a plugging and abandonment plan for the well. Include a diagram. Describe the type, grade, quality and estimated quantity of cement to be used in plugging. Describe the method of cement placement. Provide three cost estimates for plugging the well. **Procedure # UICI-11, Procedure for the Plugging and Abandonment of a Class I Non-Hazardous Waste Disposal Well-Longstring Cemented from**
31. Provide a detailed plan for the testing program to determine the injection zone properties such as static fluid level, fluid pressure, and temperature.

32. Describe the procedure to be used to obtain a representative sample of the injection zone fluid. Describe the quality assurance/quality control that will be exercised in the collection, storage and transportation of the sample to a Kansas certified laboratory for analysis. Provide the name of the laboratory that will conduct the analyses. A list of the constituents for which the sample shall be analyzed is attached.

33. Provide a schematic indicating the proposed well completion at the surface and subsurface.

34. Discuss the proposed injection interval stimulation program including fracture methods and chemical treatments.

38. Discuss how drilling fluids and the formation cuttings will be contained and managed to prevent fresh water or soil contamination. Describe the dimensions of the drilling tank and the reserve tank. Provide a plan describing how the liquid and solid contents of the drilling tank will be disposed. Provide a plan describing how the fluids and formation cuttings in the reserve tank will be disposed.

39. Provide a drilling prognosis for the well. This should include at a minimum the settings of casing, cementing, logging, coring and testing.
40. Describe the rock coring program. Include a representative well log with proposed core intervals indicated. At the minimum a core of a representative shale in the confining zone and a core of the injection zone must be obtained.

41. Describe the core testing procedures. The cores shall be analyzed for permeability, porosity and density and the lithology shall be described.

In addition, the permit will not become fully effective until the following have been received and approved by KDHE.

A. A complete set of logs of the well. New wells should have a minimum of the following logs or similar type logs. An interpretation of the logs by a person with the technical expertise to interpret the logs shall also be submitted.

Surface Bore Hole:

1. Caliper
2. Resistivity
3. Spontaneous Potential

Surface Casing:

4. Cement Bond and Variable Density

Longstring Bore Hole (including borehole below longstring casing):

5. Resistivity
6. Spontaneous Potential
7. Directional or Inclination Survey
8. Caliper
9. Gamma Ray-Neutron-Compensated Density
10. Fracture Finder

Longstring Casing:

11. Cement Bond
12. Caliper and Electromagnetic Casing Inspection

B. Complete casing and cementing information. Including cementing tickets, pipe tallies, work reports, and a drilling and completion history.

C. A chemical analysis of the injection interval fluid. Include partial chemical, heavy metals, VOC, temperature and pH analyses. All analyses shall be conducted by a laboratory certified by the State of Kansas.

D. A discussion of the injection interval characteristics. Include fluid pressure and temperature and describe the lithology of the injection zone. A core of
the injection interval must be taken and the permeability, porosity and density determined and the lithology described.

E. Results of the pressure fall-off tests including an interpretation by a person with the technical expertise to evaluate the data.

F. A static fluid level measurement of the injection interval.

G. A description of the characteristics of the confining zone. A core of the confining zone must be taken and the permeability, porosity and density determined and the lithology described.

H. Supply a schematic drawing showing the actual well completion at the surface and subsurface.

I. Results and interpretation of a test of compatibility between the fluids to be injected and the injection interval fluids and matrix minerals at the determined temperature and pressure.

J. Revised calculations of predicted reservoir pressure build-up at a 1 mile radius from the injection well based on actual injection zone properties determined from the formation testing program. Include calculations, equations and parameters. This should be calculated for the expected life of the well.

K. Revised calculations of the cone of influence based on actual injection zone properties determined from the formation testing program. Include calculations equations and parameters. This should be calculated for the expected life of the well.

L. Revised calculation of distance of wastewater flow from the injection well based on actual injection zone properties obtained from formation testing program.

M. Results of annulus pressure test and the test to check for fluid migration behind the casing. Results shall be submitted in the format described in Departmental guidelines.
AUTHORITY

To whom should future correspondence be addressed:

Name: __

Address: ___

City: _____________________________ State: __________________ Zip: _____________

(signed) ___________________________________

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my
direction or supervision in accordance with a system designed to assure that qualified personnel
properly gather and evaluate the information submitted. Based on my inquiry of the person or
persons who manage the system, or those persons directly responsible for gathering the
information, the information submitted is, to the best of my knowledge and belief, true, accurate,
and complete. I am aware that there are significant penalties for submitting false information.
K.A.R. 28-46-22 requires this certification and that this application be signed by an executive
officer of a level of at least Vice-President or other authorized signatory as described at the Code
of Federal Regulations 40 CFR 144.32 in effect on April 1, 1993.

__
Printed Name of Authorized Signatory

__
Signature of Authorized Signatory Company Title

Signatory Requirements for permit application are established in Procedure UICI-5, Procedure
for Signatories to Permit Application and Monitoring Reports for Class I Disposal Well and can
be found at:

Db
R/geology/UIC files/Applications/Class I Non-Hazard Application 2012
7/31/2012
ATTACHMENT “A”
COMPOUNDS REQUIRING ANALYSIS FOR CLASS I DISPOSAL WELLS

1. **VOLATILE ORGANIC COMPOUNDS** (Method 624-Purge & Trap GC/MS) Detection limits nominally 10 ug/L for Acrolein and Acrylonitrile at 100 ug/L.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrolein</td>
<td>10 ug/L</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>100 ug/L</td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
</tr>
<tr>
<td>Bromomethane</td>
<td></td>
</tr>
<tr>
<td>Bromoform</td>
<td></td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td></td>
</tr>
<tr>
<td>(Tetrachloromethane)</td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td></td>
</tr>
<tr>
<td>Chloroethane</td>
<td></td>
</tr>
<tr>
<td>2-Chloroethoxyvinyl ether</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
</tr>
<tr>
<td>Chloromethane (Methylchloride)</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td></td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td></td>
</tr>
<tr>
<td>trans-1,2-Dichloroethane</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloropropene</td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td></td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td></td>
</tr>
<tr>
<td>Methylenchloride (dichloromethane)</td>
<td></td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td></td>
</tr>
<tr>
<td>Trichloroethane</td>
<td></td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td></td>
</tr>
</tbody>
</table>

2. **ACID ORGANIC COMPOUNDS** (Method 625-Extractions GC-MS) Detection limits nominally 25 ug/L except for dichloro compounds at 250 ug/L.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Chloro-3-methylphenol</td>
<td></td>
</tr>
<tr>
<td>2-Chlorophenol</td>
<td></td>
</tr>
<tr>
<td>2,4-Dichlorophenol</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylphenol</td>
<td></td>
</tr>
<tr>
<td>2-Methyl-4,6-dinitrophenol</td>
<td></td>
</tr>
<tr>
<td>2-Nitrophenol</td>
<td></td>
</tr>
<tr>
<td>4-Nitrophenol</td>
<td></td>
</tr>
<tr>
<td>Pentachlorophenol</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td></td>
</tr>
</tbody>
</table>

3. **BASE/NEUTRAL ORGANIC COMPOUNDS** (Method 625-Extraction GC/MS) Detection limits nominally 10 ug/L.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Polynuclear Aromatics</td>
<td></td>
</tr>
<tr>
<td>Acenaphthene</td>
<td></td>
</tr>
</tbody>
</table>

4. **PESTICIDE COMPOUNDS** (Method 625-Extraction GC/EC) Detection limits nominally 0.01 ug/L.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldrin</td>
<td></td>
</tr>
<tr>
<td>α-BHC</td>
<td></td>
</tr>
<tr>
<td>β-BHC</td>
<td></td>
</tr>
<tr>
<td>δ-BHC</td>
<td></td>
</tr>
<tr>
<td>γ-BHC</td>
<td></td>
</tr>
<tr>
<td>Chlorodane</td>
<td></td>
</tr>
<tr>
<td>4,4’-DDD</td>
<td></td>
</tr>
</tbody>
</table>

5. **HEAVY METALS**

<table>
<thead>
<tr>
<th>Element</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony</td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td></td>
</tr>
<tr>
<td>Thallium</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
</tr>
</tbody>
</table>

6. **MISCELLANEOUS**

<table>
<thead>
<tr>
<th>Compound</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Nitrogen Containing Compounds</td>
<td></td>
</tr>
<tr>
<td>Benzidine</td>
<td></td>
</tr>
<tr>
<td>2,4-Dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>2,6-Dinitrotoluene</td>
<td></td>
</tr>
<tr>
<td>1,2-Diphenylhydrazine Nitrobenzene</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodimethylamine</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodi-n-proplamine</td>
<td></td>
</tr>
<tr>
<td>N-Nitrosodiphenylamine</td>
<td></td>
</tr>
</tbody>
</table>

7. **GEOCHEMICALS**

<table>
<thead>
<tr>
<th>Component</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Hardness (CaCO₃)</td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>Total Alkalinity</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td></td>
</tr>
<tr>
<td>Phosphate</td>
<td></td>
</tr>
<tr>
<td>Silica</td>
<td></td>
</tr>
<tr>
<td>Specific Conductance</td>
<td></td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td></td>
</tr>
<tr>
<td>Oil and Grease</td>
<td></td>
</tr>
</tbody>
</table>
TCLP REQUIREMENTS

The following constituents are regulated under the Toxicity Characteristic rule. The Waste Stream must be analyzed for these constituents using the Toxicity Characteristic Leaching Procedure (TCLP).

Benzene
Carbon tetrachloride
Chlordane
Chlorobenzene
Chloroform
m-Cresol
o-Cresol
p-Cresol
1,4-Dichlorobenzene
1,2-Dichloroethane
1,1-Dinitrotoluene
2,4-Dinitrotoluene
Heptachlor (and its hydroxide)
Hexachloro-1,3-butadiene
Hexachlorobenzene
Hexachloroethane
Methylethylketone
Nitrobenzene
Pentachlorophenol
Pyridine
Tertachloroethylene
Trichloroethylene
2,4,5-Trichlorophenol
2,4,6-Trichlorophenol
Vinyl chloride
Arsenic
Barium
Cadmium
Chromium
Lead
Mercury
Selenium
Silver
Endrin
Lindane
Methoxchlor
Toxaphene
2,4-Dichlorophenoxyacetic acid
2,4,5-Trichlorophenoxypropionic acid
FROM: Karl W. Mueldener, P.E.
Director, Bureau of Water

SUBJECT: Determination of the Types of Wastes Eligible for Disposal into Class I Underground Injection Control (UIC) Disposal Wells

PURPOSE:

To state the Bureau of Water policy for determining the types of wastes, excluding oil field brines regulated by the Kansas Corporation Commission, that are eligible for disposal through the use of Class I UIC disposal wells. The Bureau's objective is to protect against contamination of water and soil resources by ensuring compatibility of the injected waste with the well components, injection and confining zones and to use subsurface formations only for the disposal of those wastes that can not feasibly be treated, stored or disposed by other methods.

BACKGROUND:

The Bureau of Water administers the Class I UIC program developed pursuant to K.S.A. 65-171d. A major function of the program is to ensure the injection of waste is done in a controlled manner that will: 1) protect the soils and waters of the state from contamination, 2) protect human health, 3) conserve the water resources of the state, 4) encourage alternatives to the injection of wastes, and 5) use subsurface formations only for the disposal of those wastes that can not feasibly be treated, stored or disposed by other methods.

POLICY:

The use of Class I UIC disposal wells will be considered only for those wastes that cannot feasibly be treated, stored or disposed by other methods. Therefore, each new application for the disposal of wastes shall be accompanied by a report detailing the results of studies of alternate methods of waste treatment, storage or disposal technologies including an economic analysis based on a 30 year time period, justifying why subsurface disposal is considered the most feasible method of disposal.

In the even the applicant receives a Class I UIC permit, the permittee will be expected to develop, periodically update, and implement an ongoing waste minimization program which addresses the wastes being directed to the Class I UIC disposal well(s).
The applicant will be required to use the most secure compatible disposal formation available. This will typically be one of the deeper formations such as the Arbuckle.

EFFECTIVE DATE:

The above policy will be in effect on **February 1**, 1991, and will remain in effect until withdrawn, revised, or modified by the Director.

bd
TYPICAL ANNULUS SEAL POT

N2 Supply Gauge (i.e. bottle)

N2 Relief Valve → Nitrogen → PSI Gauge

Fill with Light Mineral Oil

→ Oil Sight Glass & Scale

Drain Valve → PSI Gauge

Well Head